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I. OVERVIEW 

In this report, we describe the value-added model used as part of the state of Oklahoma’s 
Teacher and Leader Effectiveness Evaluation System (TLE). We estimated measures of teacher 
and school effectiveness based on instruction provided in the 2013–2014 school year.  

The value-added model described in this report is similar to the model described in the 
technical report for value added from the 2012–2013 school year (Walsh et al. 2014). The 
Oklahoma State Department of Education (OSDE) and the TLE Commission agreed to make 
only minor changes in how value added was calculated in the 2013–2014 school year compared 
to the previous year.  

Teachers and administrators will receive value-added measures based on instruction 
provided in the 2013–2014 school year in the spring and summer of 2015. The 2014–2015 
school year is the second of two pilot years for TLE’s quantitative components. No stakes will be 
attached to the value-added results during the pilot period. The full implementation of TLE will 
begin in the 2015–2016 school year, incorporating value-added results based on instruction 
provided during the 2014–2015 school year. At that time, OSDE will combine the value-added 
results with additional TLE components to produce composite TLE ratings for teachers and 
administrators. OSDE plans for the value-added results to account for 35 percent of eligible 
teachers’ and administrators’ TLE ratings. OSDE wants educators to use the TLE ratings to 
promote continuous improvement of instruction and student achievement. 

We worked closely with the TLE Commission and key OSDE staff to design the value-
added model. The TLE Commission also sought advice from educator work groups and a six-
member technical advisory board. The Oklahoma State Board of Education then made the final 
decisions about the model’s design based on the TLE Commission’s recommendations. For a 
broader discussion of the decision-making process and key decisions about the value-added 
model, please refer to the technical report from the 2012–2013 school year (Walsh et al. 2014).  

In this chapter, we provide an overview of the value-added model and describe value-added 
methods in non-technical terms. In Chapter II, we describe how we used test scores from the 
2013–2014 school year and other information about teachers and students to estimate teacher 
value-added results. In Chapter III, we provide the technical details of the statistical methods 
used to estimate value added, and in Chapter IV, we describe how we translated value-added 
results to the scale used in the TLE system and how we calculated value-added results for 
schools and student subgroups. We include tables that summarize the population of students and 
teachers on which the value-added estimates were based, as well as the results from the statistical 
model used to produce those estimates.  

A. Using value added to measure teacher effectiveness 

Value added is a measure of what teachers or schools contribute to students’ academic 
growth. The measure compares the achievement of a teacher’s students to an estimate of how the 
same students would have achieved with an average teacher. The measure is known as value 
added because it isolates a teacher’s contribution from factors outside the teacher’s control. 
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The basic approach of value-added models is to compare two test score averages for each 
teacher: (1) the average score the students actually obtained with the teacher and (2) the average 
estimated score the same students would have obtained with an average teacher. The difference 
in these two average scores—how the students actually performed with a teacher versus how 
they would have performed with the average Oklahoma teacher—represents a teacher’s value 
added to student achievement. Similarly, a school’s value added measures how much the school 
contributes to student achievement compared to what an average school contributes. 

The estimated scores the students would have obtained with an average teacher—sometimes 
referred to as predicted scores—are called typical scores in the TLE system. OSDE chose this 
term because it highlights that the scores are estimated by looking at the typical achievement of 
students’ most similar “peers” in the state—those with similar previous scores on multiple 
assessments and other background characteristics. Rather than comparing a student’s 
achievement only to a relatively small number of students with identical background 
characteristics, we used a statistical technique called multiple regression, which simultaneously 
estimates a relationship between each included background characteristic and achievement. For 
each characteristic, this technique compares the achievement of students with the characteristic 
to the achievement of all other students in the state. Because a student’s typical score is based on 
these statewide relationships between background characteristics and achievement, it represents 
how the student would be predicted to perform with an average Oklahoma teacher. 

Because they compare actual and typical scores, value-added models enable any teacher to 
be identified as a high performer, regardless of the baseline achievement levels or background 
characteristics of the teacher’s students. For example, suppose a grade 6 math teacher has a class 
of students who, given their background characteristics such as poverty status, disability status, 
and test scores on the grade 5 math, reading, and science tests (or pre-tests), typically end the 
year with a score of 750 on the grade 6 math test (or post-test). The value-added model calculates 
a relative measure of the teacher’s effectiveness by comparing this class average typical score to 
the class average actual post-test score. In this example, if the average actual score is also 750, 
the value-added model will identify the teacher as an average performer because the typical and 
actual scores are equal. If the post-test average exceeds this standard, the teacher will be 
identified as above average; conversely, if the average is lower than the standard, the teacher will 
be considered below average. 

B. The value-added models for Oklahoma 

Although conceptually straightforward, value-added results are challenging to produce, as 
they must accurately and fairly measure the performance of teachers and schools. This requires 
(1) assembling an analysis file of data from multiple sources and (2) designing a value-added 
model that addresses Oklahoma’s specific educational context. Here, we briefly describe the key 
elements of the analysis file (described fully in Chapter II) and then introduce the steps we used 
to estimate value added for teachers and schools (see Chapters III and IV for details). 

We developed approaches to estimating value added based on two types of test scores from 
the 2013–2014 school year: (1) Oklahoma Core Curriculum Tests (OCCTs) in grades 4 through 
8 in math and reading; and (2) End of Instruction (EOI) assessments for students in grades 8 and 
9 for algebra I, grades 9 through 11 for geometry, grades 9 through 12 for algebra II, and grade 
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11 for English III. We refer to test scores from the 2013–2014 school year as post-test scores. 
The value-added models also use selected test scores from the 2012–2013 school year, which we 
refer to as pre-test scores. The value-added models yield a value-added result for each teacher on 
every subject they taught. 

Students were eligible to be in the model if they had a post-test score and a pre-test score in 
the same content area from the previous grade. For example, the analysis file for students with 
grade 5 math post-test scores includes only those students who also have grade 4 math pre-test 
scores. For a student with a grade 10 geometry post-test score, the analysis file includes only 
students with a grade 9 pre-test score for a subject in the math content area, such as algebra I. We 
excluded grade repeaters so the typical scores for all students in a grade were based on a pre-test 
score from the previous grade in the previous year. Doing so allows for meaningful comparisons 
between teachers, although it does exclude some students from the value-added model. In 
addition to pre- and post-test scores, we collected data on other background characteristics of 
students, such as limited English proficiency and poverty status. 

We also measured the amount of instructional time each student spent with each teacher, 
which we refer to as dosage. Dosage enables us to assign teachers the appropriate amount of 
credit for each student’s performance based on two factors: (1) how much of the school year the 
student was in the teacher’s class and (2) how much time the student spent with the teacher while 
enrolled. Some teachers participated in a pilot of a roster verification process in which they 
indicated whether and for how long they taught the students listed on their administrative rosters 
during each month of the school year. For teachers who participated in the pilot, we used these 
data to create a dosage for each teacher-student pair. However, some teachers did not teach in 
schools that participated in the pilot. For these teachers, we used school enrollment data to 
allocate proportional credit based on the fraction of time the student spent at the teacher’s school. 

Some students do not appear to be linked to a teacher because roster verification was not 
implemented statewide and because the administrative data from OSDE that linked teachers to 
students were limited. In these cases, we linked the student to a so-called catch-all teacher 
category of unassigned students for the school so these students could be included in the value-
added models. 

We took the following four steps to estimate the teacher value-added models. Each step 
addressed a different conceptual challenge. 

1. Estimating a multiple regression model. We used multiple regression, a statistical 
technique that enabled us to simultaneously account for a group of background factors to 
avoid holding teachers accountable for factors outside their control. We accounted for a set 
of student characteristics that could be related to performance on the OCCT or EOI post-
tests. These characteristics include pre-tests in the same content area as the post-test, pre-
tests in other content areas, poverty status, gender, race or ethnicity, existence of an 
individualized education plan, limited English language proficiency, transfers of students 
between schools during the current (2013–2014) school year, and proportion of days the 
student attended school during the previous (2012–2013) school year. For OCCT post-test 
scores in math and reading, we estimated models separately for each subject and grade. For 
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the EOI post-test scores, we pooled eligible grades and estimated one model for each of the 
four subjects. 

We weighted each student’s contribution to a teacher’s score by the proportion of time the 
student was assigned to the teacher while the teacher was teaching that subject. We used the 
Full Roster Method for teachers who shared students (Hock and Isenberg 2012). In some 
cases, a student was taught by one teacher for part of the year and another teacher for the 
rest of the year. In other cases, two or more teachers were jointly responsible for some of the 
same students at the same time. Using the Full Roster Method, teachers who shared students 
received equal credit for the students’ achievement when the amount of instructional time 
was equal. 

2. Accounting for measurement error in the pre-test. We used methods to account for the 
fact that a student’s performance on a single test is an imperfect measure of ability. If we 
had not used these methods, teachers could be unfairly held accountable for the initial 
performance of their students, rather than being assessed on the gains they produce in 
student learning. Good or bad luck on the pre-test can dampen the observed relationship 
between pre- and post-test scores, compared with the true relationship between student 
achievement at the beginning and end of the year. If we were to use the observed 
relationships without making any adjustments, teachers of students with low pre-test scores 
might be held partly accountable for the performance of their students before they entered 
their classrooms. To correct for this problem, we compensated for good or bad luck in pre-
test scores—also known as measurement error—by employing a statistical technique that 
uses data on the reliability of each OCCT and EOI test provided by the test developers. 

3. Comparing teachers across grades. The OCCT tests are not designed to allow the 
comparison of scores across grades. We therefore placed teachers on a common scale by 
translating each teacher’s value-added estimate into a metric of generalized OCCT points. 
We based this translation on a three-stage procedure. First, before the multiple-regression 
step, we translated student test scores into a common metric in which each student test score 
is measured relative to other test scores within the same year, grade, and subject. In doing 
so, we set the average student test score to zero within each year, grade, and subject. We 
then used these scores to produce initial teacher value-added estimates. Second, we adjusted 
these initial estimates so that the average teacher in each grade and subject received the 
same estimate. Third, we multiplied the resulting estimates by a grade-specific conversion 
factor to ensure that the dispersion of the estimates was similar by grade. For teachers with 
students in more than one grade, we took a student-weighted average of their grade-specific 
value-added results. 

Because the same EOI tests are given to students regardless of grade, we did not need to 
apply the same grade-level adjustments to the EOI value-added estimates. Instead, we 
accounted for grade as an additional student characteristic in the multiple regression model.1 
Although not related to grade, we applied adjustments to EOI test scores and initial value-
added estimates similar to those for the OCCT model: (1) we translated student test scores 
into a common metric in which each student test score is measured relative to other test 

                                                 
1 Although we mean-centered the student test scores and the other student characteristics in the regression, the initial 
value-added estimates also have to be mean-centered to account for differences in the weighting of the average due 
to different numbers of students contributing to each teacher’s estimate. 
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scores within the same year and subject and (2) we adjusted these estimates so that the 
average teacher in each subject received the same estimate. 

4. Accounting for imprecisely estimated measures based on few students. Value-added 
estimates can be misleading if they are based on too few students. Some students might 
score well due to good luck rather than good knowledge of the material. For teachers with 
many students, good and back luck affecting test performance tends to cancel out. However, 
a teacher with few students can receive high or low value-added results due to luck. We 
made two adjustments to reduce this risk: (1) we reported estimates only for teachers with at 
least 10 students and (2) we used a statistical technique called shrinkage that accounts for 
the precision of the initial value-added estimate by combining the adjusted value-added 
estimate (from step 3) with the overall average teacher value-added estimate to produce a 
final value-added result (Morris 1983). Whereas shrinkage adjusts estimates for teachers 
with fewer students more toward the overall average, the adjustment is smaller for teachers 
with many students. Thus, we relied more heavily on an assumption of average effectiveness 
for teachers with few students. 

After estimating the teacher value-added models, we estimated a school’s value-added result 
by averaging the teacher value-added results for teachers in the school. Consequently, a school’s 
value added reflects the combined contributions of its teachers compared to the contributions of 
teachers at an average school. We gave teachers with more students more weight in the average 
so that students who have the same dosage in the value-added model contribute equally to the 
school value-added result.2  

 

 

                                                 
2 Value-added results for the catch-all teachers of unassigned students were included in the average for schools with 
incomplete data linking teachers to students. 
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II. DATA 

In this chapter, we review the data we used to generate value-added estimates of teacher and 
school effectiveness. First, we discuss the Oklahoma Core Curriculum Test (OCCT) and end-of-
instruction (EOI) assessment scores used in the value-added model. We then discuss the data on 
student background characteristics used in the model. Finally, we discuss how we calculated 
teachers’ shares of instruction when different teachers taught the same subject to the same 
students. 

A. OCCT and EOI test scores 

The outcomes we analyzed were 2014 scores from the OCCTs in math and reading and EOI 
assessments in algebra I, geometry, algebra II, and English III. We refer to test scores from the 
2013–2014 school year as post-test scores. The value-added model also uses selected test scores 
from the 2012–2013 school year, referred to as pre-test scores. To be included in the value-added 
model, students’ test score records had to meet certain conditions based on when they were 
tested and whether we had a record of where they were enrolled in school. The first set of 
conditions varies by test type: 

• Students enrolled in grades 4 through 8 during the 2013–2014 school year were eligible to 
be included if they had an OCCT math or reading post-test score. 

• Students with EOI scores in algebra I, geometry, algebra II, or English III from the 2013–
2014 school year were eligible to be included if they were in a grade in which that subject 
area is typically taught. These grades were 8 and 9 for algebra I, 9 through 11 for geometry, 
9 through 12 for algebra II, and 11 for English III. 

The first two columns of Table II.1 summarize the post-test subjects and grades included in the 
value-added model. 

We excluded test scores from the Oklahoma Modified Alternate Assessment Program 
(OMAAP) and OAAP assessments. We then excluded students with post-tests from the analysis 
file if they met any of five conditions.  

1. First, we excluded students who had conflicting post-test score records for the same test type 
and subject, or who had scores that were not in the valid range for the test type and subject.  

2. Second, we required that students were not retaking their EOI post-test; we excluded a 
student’s post-test score for a subject if the student had an EOI score from the 2012–2013 
school year for the same subject.3  

                                                 
3 Although we excluded students who were retaking a post-test they took the year before, we did not exclude 
students who took the same test twice during the same school year. When a student took the same EOI post-test 
twice during the 2013–2014 school year, we included the post-test score from the earlier test so that all post-test 
scores in the value-added models reflect the scores from the first time students take a test in a subject (in the same or 
a different school year). When a student took the same EOI pre-test twice during the 2012–2013 school year, or took 
the same test in the year before, we included the pre-test score from the later test so that all pre-test scores in the 
value-added models reflect the most recent measure of baseline achievement in a subject.  
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3. Third, we excluded students who repeated or skipped a grade between the 2012–2013 and 
2013–2014 school years, as they lacked pre- and post-test scores in consecutive grades and 
years.  

4. Fourth, we required that students have a pre-test score in the same content area. For the 
OCCT post-tests, we required that students have pre-test scores in the same subject (math or 
reading). For EOI post-tests in algebra I, geometry, and algebra II, the pre-test scores must 
be another score in the math content area, which includes algebra I, geometry, algebra II, 
and OCCT math. For EOI post-tests in English III, the pre-test scores must be another score 
in the reading/English language arts (ELA) content area, which includes English II and 
OCCT reading. The third column of Table II.1 lists the possible same-content pre-tests for 
each post-test subject.  

5. Finally, we excluded students from the analysis file if they were not linked to a teacher 
eligible to be in the value-added model. To be eligible, a teacher had to teach at least five 
students in his or her grade for an OCCT subject, or across eligible grades for an EOI 
subject. We do not estimate a value-added measure for teachers with so few students. 

Some students were not linked to any teacher in a subject. An unassigned student that was 
not excluded for any of the five reasons above can still be linked to a so-called catch-all teacher 
category for the student’s school. A catch-all teacher stands in for the set of teachers in a school 
with missing or incomplete links to students in the data we received from OSDE. In doing so, we 
included an unassigned student in the value-added model if the student’s catch-all teacher meets 
the same five-student eligibility requirement for an OCCT or EOI subject.4   

Table II.1. Value-added model test subjects and grades 

Post-test subject Post-test grades Same-content pre-test subjects 
OCCT math 4 through 8 OCCT math 
OCCT reading 4 through 8 OCCT reading 
Algebra I EOI 8 and 9 OCCT math 
Geometry EOI 9 through 11 OCCT math, algebra I, algebra II 
Algebra II EOI 9 through 12 Algebra I, geometry 
English III EOI 11 English II 

Note: For a post-test score to be included in the value-added model, the student must have a pre-test score from 
the same content area in the previous grade. 

After applying these rules, we reported estimates only for teachers who taught 10 or more 
students over the course of the 2013–2014 school year in at least one subject in any grade. Only 
students who were linked to a teacher who met the five-student threshold and were included in 
the analysis file counted towards this 10-student minimum. For example, we would report an 
estimate in reading for a teacher who claimed seven students in reading in grade 4 and six 
students in grade 5. For a teacher who claimed nine students in reading in grade 4 and four 

                                                 
4 We included a catch-all teacher for each grade in a school with unassigned students in the value-added models for 
OCCT math and reading, and a single catch-all teacher that captured unassigned students in any grade in a school in 
the value-added models for EOI subjects. 
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students in grade 5, however, the grade 5 students would not be linked to the teacher, as they 
would not meet the five-student minimum in that grade level. Because such a teacher would be 
linked to only nine students across all grades, we would not report a value-added estimate in 
reading for this teacher. 

Table II.2 shows the total number of students who could have been included in the analyses, 
the reasons why excluded students were removed, and the total number of students whose test 
results were used in the models after the exclusions had been made. The second through fifth 
columns show the totals for students in OCCT math and reading, and the last two columns show 
the totals for all four EOI subjects combined. The top row shows the total number of students 
with post-test scores. As shown in the bottom row of the table, 85.0 percent of students with test 
scores from 2013–2014 were included in the analysis file for OCCT math, 85.6 percent for 
reading, and 69.0 percent for EOI subjects. The most common reason students were excluded 
was for missing a pre-test score from the same content area as the post-test. 

The pre-test subjects associated with each EOI post-test subject vary because not all students 
take the EOI test in a subject in the same grade, and because there is no set order in which 
students must take the courses associated with the tests. We show the distribution of eligible pre-
tests for each EOI post-test in Table II.3. For example, 74.3 percent of students with algebra I 
post-test scores in the analysis file have grade 8 OCCT math pre-tests, and 25.7 percent have 
grade 7 OCCT math pre-tests. These percentages sum to 100 percent because we required that all 
students in the analysis file have a pre-test score in the same content area.5 In contrast, only 98.1 
percent of students with an algebra I post-test score have a pre-test score in the reading/ELA 
content area because we do not require that algebra I students have a reading/ELA pre-test. 

The OCCT and EOI scores ranged from 400 to 999. However, OCCT scores on these scales 
are not designed to be meaningfully compared between grades, years, and subjects, nor can EOI 
scores be compared meaningfully between years and subjects. To compare OCCT test scores 
across grades within each subject and year, we transformed the test scores in a two-part process. 
First, we subtracted the mean score and divided by the standard deviation for each grade, subject, 
and year to obtain a z-score.6 This step enabled us to translate the math and reading content 
scores in every grade into a common metric. Second, we created a measure with a range 
resembling the original test score scale by multiplying each z-score by a common factor across 
all grades within each subject and year. The common factor was equal to the square root of the 
average variance across all grades for each subject and year. For EOI scores, we subtracted the 
mean score for each subject, and year, but did not change the standard deviation. 

                                                 
5 For students with scores from two or more different math assessments from the 2012–2013 school year, we 
included only the score on the higher-level assessment. We considered OCCT assessments as lower than EOI 
assessments. Algebra II is the highest-level EOI assessment, and geometry is higher than algebra I. For example, 
only algebra I scores were used as pre-tests for students who took both the grade 8 math and algebra I assessments in 
2012–2013. 

6 Subtracting the mean score for each subject and grade creates a score with a mean of zero in all subject-grade 
combinations. 
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Table II.2. Reasons that students tested in 2014 were excluded from the 

analysis files 

 OCCT math OCCT reading EOI subjects 

 Number Percentage Number Percentage Number Percentage 

Students with post-test scores 229,064 100.0 239,519 100.0 168,818 100.0 

(1) Conflicting post-test scores 57 0.0 59 0.0 1,320 0.8 

(2) Score in same subject as EOI 
post-test from previous year  0 0.0 0 0.0 15,235 9.0 

(3) Skipped or repeated a grade  1,604 0.7 1,629 0.7 2,888 1.7 

(4) Missing pre-test score from 
same content area 29,002 12.7 30,640 12.8 30,360 18.0 

(5) Not linked to an eligible 
teacher 3,609 1.6 2,247 0.9 2,478 1.5 

Total excluded 34,272 15.0 34,575 14.4 52,281 31.0 

Total included 194,792 85.0 204,944 85.6 116,537 69.0 

Source: OSDE administrative data. 

Notes: The table does not include 7,936 student-subject combinations with OMAAP or OAAP scores from 2014, 
but no OCCT or EOI tests. The table includes only students in eligible grades for a post-test subject. 

Students are excluded sequentially in the order presented and so do not count for more than one reason in 
this table. 

The columns for math and reading include students in grades 4 through 8. The EOI subjects are algebra I, 
geometry, algebra II, and English III. 

For OCCT math, algebra I, geometry, or algebra II, the same-content pre-test score is another mathematics 
assessment. For OCCT reading or English III, the same-content pre-test score is another reading/ELA 
assessment. 

For OCCT subjects, teachers must be linked to at least five eligible students in a single grade level to be 
considered eligible to be included in the value-added model. For EOI subjects, teachers must be linked to 
at least five eligible students in any grade to be considered eligible. We then reported estimates in a subject 
only for teachers who taught 10 or more students in any grade. The table counts students linked to 
teachers who do not meet the 5-student threshold as excluded for not being linked to an eligible teacher. 
Because we estimated (but did not report) value-added results for teachers who did not meet the 
10-student threshold, the table counts students linked to those teachers as included in the analysis files. 

Post-tested students not linked to any teacher in a subject are linked to catch-all teachers of unassigned 
students for the school-grade combination. These catch-all teachers are considered eligible teachers if they 
are linked to at least five eligible students.  
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Table II.3. Pre-test subjects of students by EOI post-test subject 

 Post-test subject 

 Algebra I Geometry Algebra II English III 

Pre-test subject Number Percentage Number Percentage Number Percentage Number Percentage 

Math         

Grade 7 OCCT 8,363 25.7 0 0.0 0 0.0 0 0.0 

Grade 8 OCCT 24,118 74.3 311 1.0 0 0.0 0 0.0 

Algebra I 0 0.0 28,253 91.2 3,874 14.9 2,801 10.4 

Geometry 0 0.0 0 0.0 22,209 85.1 15,420 57.1 

Algebra II 0 0.0 2,399 7.7 0 0.0 6,979 25.8 

No math pre-test 0 0.0 0 0.0 0 0.0 1,810 6.7 

Total 32,481 100.0 30,963 100.0 26,083 100.0 27,010 100.0 

Reading/ELA         

Grade 7 OCCT 8,337 25.7 0 0.0 0 0.0 0 0.0 

Grade 8 OCCT 23,534 72.5 7,167 23.1 0 0.0 0 0.0 

English II 0 0.0 3,876 12.5 14,151 54.3 27,010 100.0 

No reading/ELA pre-test 610 1.9 19,920 64.3 11,932 45.7 0 0.0 

Total 32,481 100.0 30,963 100.0 26,083 100.0 27,010 100.0 

Science         

Grade 8 OCCT 23,911 73.6 7,193 23.2 0 0.0 0 0.0 

Biology I 0 0.0 9,222 29.8 12,900 49.5 14,969 55.4 

No science pre-test 8,570 26.4 14,548 47.0 13,183 50.5 12,041 44.6 

Total 32,481 100.0 30,963 100.0 26,083 100.0 27,010 100.0 

Source: OSDE administrative data. 

Notes: All percentages are based on the total count for the post-test subject. 

 To be included in the model, students are required to have a pre-test score in the same content area as the post-test. For OCCT math, algebra I, 
geometry, or algebra II, the same-content pre-test score is another mathematics assessment. For OCCT reading or English III, the same-content pre-
test score is another reading/ELA assessment. Students are not required to have pre-tests in other content areas. 
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B. Student background characteristics 

We used the data provided by OSDE to construct variables used as controls for student 
background characteristics in the value-added model. The value-added model accounts for the 
following: 

• Prior achievement in the same content area as the post-test 

• Prior achievement in other content areas (including math, reading/ELA, and science, when 
available) 

• Poverty status 

• Gender 

• Race/ethnicity 

• Existence of an individualized education plan (IEP) 

• Limited English language proficiency 

• Transfers of students across schools during the 2013–2014 school year 

• Proportion of days the student attended school during the 2012–2013 school year 

Attendance is a measure of student motivation. We used student attendance the year 
before—rather than the current year—to avoid confounding student attendance with current-year 
teacher effectiveness; that is, a good teacher might be expected to motivate students to attend 
school more regularly than a weaker teacher would. The proportion of the days a student 
attended school is a continuous variable that could range from zero to one. Because some 
districts did not provide OSDE with student-level attendance records from the 2012–2013 school 
year, we used the typical attendance rate from the student’s school and grade in place of the 
student’s individual attendance rate for 44.5 percent of students in the analysis files.  

Aside from attendance and pre-test variables, the student background variables are binary, 
taking a value of zero or one. In the OCCT value-added model we accounted for the existence of 
an IEP and limited English proficiency separately for students with and without accommodations 
on the post-test assessment. In the EOI models we pooled students with IEPs and students with 
limited English proficiency into single categories because too few students received 
accommodations to include these students in separate categories. Table II.4 shows the 
characteristics of students in the OCCT and EOI analysis files. 

We imputed data for students who were included in the analysis file, but had missing values 
for one or more student characteristics. Our imputation approach used the values of non-missing 
student characteristics to predict the value of the missing characteristic. Less than 3 percent of 
students in the value-added analysis files had any characteristic imputed. Most imputed values 
were for missing pre-test scores in different content areas from the OCCT post-test.7 We did not 
generate imputed values for the same-content pre-test; rather, we dropped from the analysis file 

                                                 
7 In addition to imputing values for some of the characteristics included in Table II.4, we also generated imputed 
values of attendance during the 2012–2013 school year for less than 1 percent of students. 
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any students with missing same-content pre-test scores. Finally, we did not impute any missing 
pre-test scores for students in the EOI analysis file. 

Table II.4. Characteristics of students from the 2013–2014 school year 

Characteristic 

OCCT math OCCT reading EOI subjects 
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Included in the value-added model 194,792 100.0 204,944 100.0 116,537 100.0 

Eligible for free lunch 95,883 49.2 97,927 47.8 41,944 36.0 

Eligible for reduced-price lunch 17,973 9.2 18,763 9.2 10,179 8.7 

Female 97,279 49.9 103,015 50.3 60,049 51.5 

African American 22,622 11.6 23,470 11.5 12,196 10.5 

Hispanic 29,433 15.1 30,129 14.7 14,485 12.4 

American Indian 45,381 23.3 47,159 23.0 25,887 22.2 

Asian/Pacific Islander 5,458 2.8 6,118 3.0 3,392 2.9 

Caucasian/other 138,284 71.0 145,935 71.2 83,506 71.7 

Individualized education plan with 
accommodations 9,534 4.9 10,413 5.1 n.a 

Individualized education plan without 
accommodations 

12,066 6.2 10,173 5.0 n.a 

Limited English proficiency with 
accommodations 6,867 3.5 7,272 3.5 n.a 

Limited English proficiency without 
accommodations 

2,974 1.5 2,017 1.0 n.a 

Individualized education plan with or 
without accommodations n.a n.a 6,757 5.8 

Limited English proficiency with or without 
accommodations 

n.a n.a 2,345 2.0 

Transferred schools during the school 
year 12,744 6.5 13,074 6.4 4,962 4.3 

Source: OSDE administrative data. 

Notes: All percentages are based on the counts in the top row. 

 Because relatively few students had test accommodations on EOI post-tests, students with and without 
accommodations were pooled when accounting for individual education plans and limited English 
proficiency for EOI subjects. 

 For all student characteristics in this table, less than 1 percent of students have missing data. 

n.a. = not applicable 

C. Dosage for teacher-student links 

Some students were taught by more than one teacher, either because they moved between 
schools or were taught by multiple teachers in the same school. We refer to the fraction of the 
time a student was taught by a given teacher for a subject as the dosage. In this section, we 
describe how we calculated dosage for the value-added model. 
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1. Roster verification 

In the 2012–2013 school year, OSDE implemented a pilot roster verification program in 
selected schools, which was expanded to additional schools in the 2013–2014 school year.8 
Roster verification is a process by which records of teachers’ monthly shares of instruction for 
each student and course are submitted and either verified or corrected by teachers and school 
administrators. For example, consider a student who spends 2.5 days per week in teacher A’s 
classroom learning math and 2.5 days per week in teacher B’s classroom learning math. This 
student would be recorded as having spent 50 percent of math instructional time with teacher A 
for that month. Likewise, the same student would also be recorded as having spent 50 percent of 
math instructional time with teacher B for that month. In recording their share of instructional 
time with a student, teachers rounded to the nearest quarter. Thus, 0, 25, 50, 75, and 100 percent 
were the possible responses. After these shares were reported, they were verified or corrected by 
those teachers and school administrators. The roster verification process differed slightly in the 
Tulsa public schools, where teachers rounded to the nearest 10 percent. Roster verification was 
not implemented statewide and was not always fully implemented in the pilot schools. 

2. Dosage 

Teacher dosage measures the proportion of instructional time a teacher spent with a student 
during the school year. We excluded instructional time after the post-tests from the calculation of 
dosage. For example, because the spring testing window spans April to early May, we excluded 
instructional time in May or later from the calculation of dosage. Similarly, we excluded 
instructional time in January or later for students who took an EOI post-test during the winter 
testing window in December.9 To calculate teacher dosage for a teacher-student link, we used a 
three-step process: (1) we determined the amount of instructional time in each month of the 
school year, (2) we summed the monthly dosages, and (3) we divided by the number of months 
to obtain dosage as a percentage of the school year through April (or December for post-tests 
taken in the winter testing window).  

So that solo-taught and co-taught students contribute equally to teachers’ value-added 
estimates, we assigned each teacher full credit for the shared students when two or more teachers 
claimed the same students at 100 percent during the same term. In doing so, we summed monthly 
dosages for a teacher-student combination when the student was linked to the teacher in multiple 
courses in the same subject. Thus a teacher-student link could have a dosage that exceeds 100 
percent. For example, a teacher who claimed the same student in roster confirmation for two full-
year courses, and assigned 100 percent instructional time in every month for both courses would 
have a combined dosage of 200 percent for that student.  

                                                 
8 The full rollout of roster verification for Oklahoma is planned for the 2014–2015 school year. 

9 We calculate dosage the same way for all students who take the test during the same testing window because we 
know only the season of the testing window and do not know the exact date individual students were tested. In 
addition to the winter and spring testing windows, some Oklahoma students take the EOI assessments on a trimester 
schedule. These students take the test in late January or early February. We calculate dosage for students taking an 
EOI test during this window the same as for students taking a test during the winter window because we cannot 
distinguish between tests taken during these two testing windows. 
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Although we obtained monthly dosage from the roster-verified records when possible, roster 
verification was not implemented statewide. For teachers without verified roster data, we 
assumed that the monthly dosage for a teacher-student link was equal to the proportion of 
instructional days the student was officially enrolled in the school based on administrative data 
from OSDE. These data contained dates of school withdrawal and admission.  

For dosage based on both roster-verified and administrative teacher-student links, we 
assume that learning accumulated at a constant rate and, therefore, treat days spent at one school 
as interchangeable with days spent at another. For example, if a student split time equally 
between two schools, we set the dosage of each school to 50 percent, regardless of which school 
the student attended first. 

3. Catch-all teachers 

Some students appear to not be linked to a math or reading/ELA teacher because roster 
verification was not implemented statewide and because of limitations in the administrative data 
provided by OSDE that linked teachers to students. For example, some students with post-test 
scores in the analysis file were not linked to a teacher in the post-test’s subject. All such students 
were assigned a placeholder teacher for each subject in which they had no roster record linking 
them to a teacher. We created a so-called catch-all teacher in OCCT subjects for each school-
grade combination that had unlinked post-tested students. We did the same in EOI subjects for 
each school that had unlinked post-tested students. Teacher dosages were assigned to catch-all 
teachers in the same manner as teachers with unverified roster records. Across all grades and 
subjects, 5.6 percent of teacher-student links are to catch-all teachers of unassigned students. 
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III. ESTIMATING TEACHER VALUE ADDED 

In this chapter, we describe the technical details of the teacher value-added model. Our 
approach is to obtain initial estimates of teacher effectiveness from linear regressions. We then 
obtain final value-added results by applying two adjustments to the initial estimates to account 
for differences across grades and different numbers of students per teacher. We organize the 
discussion into four topics: (1) the estimation equations, (2) how we address measurement error 
in the pre-tests in the regressions, (3) how we generalize estimates to be comparable across 
grades, and (4) how we account for the number of students per teacher. 

A. Estimation equations 

We developed two linear regression approaches to estimate school and teacher effectiveness 
measures, based on whether the post-test score was from the OCCT or EOI. For the OCCT 
approach, we estimated regression models separately for each grade and subject combination. 
This approach covered grades 4 through 8 and the subjects reading and math. For the EOI 
approach, we estimated the regression models separately for each subject only. The subjects 
were algebra I, geometry, algebra II, and English III. For these EOI subjects, we pooled the 
regression models by subject across grades because the assessment for a given subject is the 
same in any grade that it is taken. For EOI subjects, the grades were 8 and 9 for algebra I, 
9 through 11 for geometry, 9 through 12 for algebra II, and 11 for English III. We excluded 
grades other than these for EOI subjects because too few students had post-tests. 

For both the OCCT and EOI approaches, the post-test score depends on pre-test scores, 
student background characteristics, the student’s teacher, and unmeasured factors. For a given 
teacher t and student i in grade g, the regression equation for the OCCT approach is: 

(1) ( ) ( ) ( )1 1 1 1 1 1 11 1 1tig Mg Rg Sg g i g tig tigi g i g i gY M R Sλ λ λ ε− − − ′ ′= + + + + +β X δ T , 

and the regression equation for the EOI approach is: 

(2) ( ) ( )2 2 2 2 21 1tig g i i ti tigi g i gY ε− −′ ′ ′ ′ ′ ′= + + + + + +λ P γC κG τ A β X δ T , 

In both equations, Ytig is the post-test score. The regressions are run separately by post-test 
subject, so we drop a subject subscript for ease of notation. In the OCCT equation, Mi(g-1) is the 
math pre-test for student i from the previous grade g-1, and Ri(g-1) is the reading pre-test from the 
previous grade. For students in grade 6, we also include Si(g-1), the science pre-test taken in the 
previous grade. 

In the EOI equation, the vector Pi(g-1) denotes variables for pre-test scores in each of the 
included subjects in the previous grade. Unlike the OCCT approach, in the EOI approach not all 
students with a post-test in a given subject have scores from the same pre-tests. For example, the 
regression for the geometry post-test included five pre-test variables—grade 8 math, algebra I, 
algebra II, English II, and biology. Because all students included in the EOI models were 
required to have a pre-test score on a same-content assessment, students included in the 
regression for the geometry post-test have a pre-test score in one of grade 8 math, algebra I, or 
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algebra II. Some students in the geometry regression additionally have pre-test scores in English 
II and/or biology, but these were not required for all students. To account for different pre-test 
subjects, the EOI equation includes binary variables in Ci(g-1) that indicate whether a student had 
a pre-test in each subject. The vector Ci(g-1) also includes variables that indicate whether the pre-
test was the second time a student had taken the test in the subject. For example, a student who 
took algebra I in 2011–2012, algebra I again in 2012–2013 (the pre-test), and geometry in 2013–
2014 (the post-test) would be indicated in Ci(g-1) as having taken algebra I as a pre-test and as 
having taken algebra I a second time. We excluded students who were retaking a post-test they 
took the year before. 

The pre-test scores in both equations capture prior inputs into student achievement; we 
estimated the associated coefficients—λ1Mg, λ1Rg, λ1Sg—and the vector λ2, using a procedure that 
corrects for measurement error in these pre-test scores. The subscripts 1 and 2 distinguish the 
OCCT model coefficients from the EOI model coefficients. 

The vector Xi denotes the control variables for student background characteristics. For the 
OCCT approach, we allowed these coefficients to vary by grade, represented in equation 1 by the 
g subscript on the vector β1g. Because there are some grade and subject combinations for EOI 
post-test scores with very few students, we did not allow the coefficients to vary by grade for the 
EOI approach. Doing so leads to more precise coefficient estimates in β2 and could lead to more 
precise value-added results. 

The vectors T1tig and T2ti consist of binary variables for each teacher. Because the OCCT 
approach is estimated separately by grade, a teacher who taught multiple grades had variables in 
each grade regression model. For example, a teacher who taught math in grades 4 and 5 had one 
variable in T1ti4 for the grade 4 regression and one in T1ti5 for the grade 5 regression. The EOI 
approach is not grade-specific, so a teacher who taught multiple grades had only one variable in 
T2ti. Each teacher-student observation has one nonzero element in T1tig and/or T2ti. The 
coefficient vectors δ1 and δ2 contain the initial estimates of teacher effectiveness. Rather than 
dropping one element of T1tig or T2ti from the regression, we estimated the regression models 
without constant terms. The vectors T1tig and T2ti also include binary variables for the catch-all 
teachers of unassigned students. We also mean-centered the control variables so that each 
element of δ1g and δ2 represents a teacher-specific intercept term for a student with average 
characteristics. 

We also accounted for factors beyond a teacher’s control that might drive cross-grade 
differences in value added. For the EOI approach, we included binary variables for each grade in 
the vector Gg. We excluded the indicator for the highest included grade for each subject. These 
variables account for the possibility that a student’s achievement in a subject could be related to 
their grade level. This approach avoids penalizing teachers for teaching in grades with lower-
ability students. Because we estimated the OCCT model separately by grade, the approach does 
not include grade variables. However, we adjusted for possible differences across grades in the 
average and variability of value-added estimates, using the approach described in Section III.C. 

Finally, to account for any differences in achievement that may be related to the timing of 
EOI tests, we also included the vector Ai with indicators for the season the student took the post-
test (winter, spring, or summer). 
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Table III.1 shows the coefficient estimates and standard errors of the control variables in the 
model by subject and grade span. The top panel shows the average association between the pre-
tests and achievement on the post-tests (measured in points on the test), accounting for all other 
variables in the regression. The bottom panel shows the association between each student 
characteristic and post-test scores. 

To account for team teaching, we used the Full Roster Method (Hock and Isenberg 2012). In 
this approach, each student contributed one observation to the model for each teacher to whom 
he or she was linked. Thus, the unit of observation in the analysis file is a teacher-student 
combination. This method of accounting for team teaching is based on the assumption that 
teachers who contribute equally to student achievement within each team receive equal credit.  

Because some students contributed multiple observations, we estimated the coefficients by 
using weighted least squares (WLS) rather than ordinary least squared (OLS). We weighted each 
record based on the dosage associated with the teacher-student combination. In this model, the 
error terms are correlated, because individual students have multiple records, and 
heteroskedastic, due to differences across students in how well the model can predict post-test 
scores based on the background characteristics included in the regressions. Therefore, we used a 
cluster-robust sandwich variance estimator (Liang and Zeger 1986; Arellano 1987) to produce 
consistent standard errors in the presence of heteroskedasticity and correlation in the regression 
error term.  

The regression models yield initial estimates of teacher effectiveness for each grade and 
subject for the OCCT approach and for each subject in the EOI approach. For the OCCT 
approach, we included teachers in the regression model only if they had at least five students in 
that grade and subject combination. For the EOI approach, we calculated initial estimates for 
teachers with at least five students across all eligible grades. We used the initial estimates in the 
subsequent step to generalize across grades, then applied empirical Bayes (EB) shrinkage to the 
generalized estimates. As a final step, we removed any teachers with fewer than 10 students 
across all eligible grades. 

  



MEASURING TEACHER AND SCHOOL VALUE ADDED IN OKLAHOMA MATHEMATICA POLICY RESEARCH 

 
 

20 

How to Interpret Table III.1 

Table III.1 displays the regression coefficients from the value-added model. These coefficients describe the 
relationships between the characteristics of Oklahoma students and achievement on the post-test. The coefficients 
give the amount of the increase (or decrease if the coefficient is negative) in the typical achievement of students 
when a characteristic increases by one unit. For example, the coefficient of 0.66 in the first row of the second column 
of the table indicates that an increase by one OCCT point on a student’s pre-test score is associated with a typical 
increase of 0.66 points on the OCCT math post-test. Similarly, the coefficient on the fraction of the prior year a 
student attended school indicates that the typical score for a student who attended 100 percent of the prior year is 
42 points higher than the typical score for a student who instead had attended for none of the prior year. More than 
99.5 percent of students attended 80 percent or more of the year before, so the usual contribution of previous 
attendance to students’ typical scores is much smaller than this change of 42 points might suggest; the change in 
typical scores associated with a change in attendance from 80 to 100 percent is 8.4 OCCT points. 

For characteristics that are yes/no indicators, the coefficient gives the increase in the typical score for a student 
who has that characteristic relative to an otherwise similar student who does not. For example, the typical score for 
students in grades 4 through 8 math who transferred between schools during the school year is 7.16 points lower 
than for students who did not transfer. The other binary indicators are in groups of related indicators. For example, 
the coefficients on the two indicators of student poverty status measure the difference in the typical score of a student 
with that status (for example, students eligible for reduced-price lunch) relative to a student who is eligible for free 
lunch. 

Each regression coefficient describes a relationship after accounting for all other characteristics included in the 
model. Accordingly, the coefficient on a characteristic gives the change in typical achievement when the 
characteristic is changed from no to yes or increased by one point, assuming that all of the students’ other 
characteristics remain the same. Consequently, coefficients may not reflect the relationship we would observe had 
the other characteristics not been accounted for in the value-added model. This feature of multiple regression 
coefficients can produce counterintuitive relationships between characteristics and achievement if the contributions 
of one characteristic are accounted for largely by another characteristic in the model. For example, coefficients on 
limited English proficiency status would likely be consistently negative and greater in magnitude if the model did not 
also account for students’ pre-test scores, because students with limited English proficiency tend to have lower pre-
test scores. 

The magnitude of the coefficients can be compared to the typical range of student achievement on an OCCT 
or EOI test. The standard deviation of student achievement on the grade 4 math post-test was 90.9 OCCT points, 
indicating that about two-thirds of students scored within 90.9 points above or below the average score on the 
assessment. The standard deviations for other grades ranged from 71.9 to 90.3 points in grades 4 through 8 math, 
from 68.2 to 54.8 points in grades 4 through 8 reading, and from 50.2 to 70.1 points in the four EOI subjects. 

The number in parentheses below each coefficient is the standard error of the coefficient—a measure of 
precision. A more precise coefficient indicates with more certainty that a coefficient reflects the actual relationship 
between the characteristic and achievement. Coefficients with smaller standard errors are more precise. The 
coefficients on the pre-tests are more precise than those on individual background characteristics. Roughly, a 
coefficient that is at least twice as large as its standard error is said to be statistically significant, meaning that it is 
likely that the direction of the relationship—whether positive or negative—reflects the actual relationship between 
the characteristic and achievement and is unlikely to be produced by chance. 
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Table III.1. Coefficients on covariates in the value-added models, by post-test 

subject 

Variable 

OCCT 

Math 

OCCT 

Reading Algebra I Geometry  Algebra II English III 

Pre-test scores (average coefficients) 

Math 0.66 0.15 0.40 0.76 0.59 0.06 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Reading/ELA 0.15 0.65 0.06 0.05 0.04 0.62 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Science 0.15 0.31 0.11 0.15 0.10 0.07 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Individual student background characteristics (average coefficients) 

Ineligible for free or reduced-price 
lunch 

4.35 5.26 1.06 1.87 -0.17 1.75 
(0.64) (0.62) (0.45) (0.56) (0.70) (0.52) 

Eligible for reduced-price lunch 1.52 2.22 0.22 1.67 0.57 0.24 
(0.95) (0.90) (0.68) (0.89) (1.10) (0.85) 

Female 1.39 5.85 5.25 -3.00 4.95 1.80 
(0.52) (0.50) (0.38) (0.47) (0.56) (0.43) 

African American -3.06 -1.20 -0.16 -5.30 1.84 -1.76 
(1.22) (1.18) (0.94) (1.22) (1.44) (1.14) 

Hispanic 0.83 -0.87 2.02 -1.92 2.65 0.61 
(0.90) (0.85) (0.64) (0.84) (1.03) (0.75) 

American Indian -1.24 0.25 -1.64 -0.62 -0.60 -1.26 
(0.99) (0.96) (0.74) (0.96) (1.12) (0.91) 

Asian/Pacific Islander 12.66 3.78 9.26 5.20 9.21 1.62 
(1.87) (1.70) (1.37) (1.75) (1.83) (1.56) 

Caucasian/other 0.19 1.62 -2.07 1.47 1.11 -0.03 
 (1.04) (1.01) (0.80) (1.02) (1.21) (0.95) 

Individual education plan with 
accommodations 

-4.02 -3.81 n.a. n.a. n.a. n.a. 
(1.38) (1.21)     

Individual education plan without 
accommodations 

-5.55 -11.80 n.a. n.a. n.a. n.a. 
(1.39) (1.43)     

Limited English proficiency with 
accommodations 

-0.73 -4.75 n.a. n.a. n.a. n.a. 
(1.81) (1.60)     

Limited English proficiency without 
accommodations 

-2.08 -7.60 n.a. n.a. n.a. n.a. 
(3.10) (3.51)     

Individual education plan with or 
without accommodations 

n.a. n.a. -2.17 -11.42 -8.96 -4.23 
  (0.96) (1.41) (1.69) (1.18) 

Limited English proficiency with or 
without accommodations 

n.a. n.a. 2.90 -0.73 6.97 2.22 
  (1.50) (2.27) (3.17) (2.59) 

Transferred schools during the 
school year 

-7.16 -4.79 -6.17 -7.95 -14.27 -2.98 
(1.26) (1.18) (0.99) (1.41) (2.31) (1.21) 

Fraction of the prior year student 
attended school 

0.42 -0.21 0.35 0.40 0.67 0.02 
(0.10) (0.10) (0.07) (0.09) (0.11) (0.07) 

Source: Mathematica calculations based on OSDE administrative data. 

Notes: Standard errors are in parentheses. 

For OCCT post-tests, the reported coefficient estimates represent weighted averages of the coefficients estimated separately for each 
grade, where the weights are the number of student equivalents in the grade. Additionally, for EOI post-tests, the reported coefficient 
estimates of pre-test scores represent weighted averages of the coefficients estimated separately for each pre-test subject in the content 
area, where the weights are the number of student equivalents with a pre-test score in a given subject. The associated standard errors 
similarly represent weighted averages across grades or subjects. These numbers are presented for descriptive purposes only and should 
not be used to conduct rigorous statistical tests.  

The math pre-test score for students in the OCCT math value-added model is the OCCT math assessment from the previous grade. The 
math pre-test score for students in the EOI models is another math OCCT or EOI assessment from the previous grade. Similarly, 
reading/ELA pre-test scores are OCCT reading or English II scores from the previous grade. OCCT science pre-test scores are included 
for students in grades 6 and 9, and EOI biology pre-test scores are included for students who took the test in the previous grade. 

Coefficients on the poverty status variables are relative to students eligible for free lunch—the excluded category. Students can be 
indicated in multiple race/ethnicity categories, so the coefficients on the variables are relative to students who are not in the specific 
race/ethnicity category. 

n.a. = not applicable. 
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B. Measurement error in the pre-tests 

We corrected for measurement error in the pre-tests by using data on test reliability. As a 
measure of true student ability, student achievement tests contain measurement error. This error 
causes standard models to produce biased estimates of teacher effectiveness. To address this 
issue, we implemented an errors-in-variables correction (Buonaccorsi 2010). Using information 
about the reliability of the OCCT and EOI tests, available from the test publisher, the correction 
nets out the known amount of measurement error (CTB/McGraw-Hill 2013a, 2013b). 

Correcting for measurement error required two regression steps because of computational 
limitations with the measurement-error correction method related to producing measures of 
precision. In the first step, we applied the errors-in-variables correction to account for 
measurement error. The second regression step was necessary to calculate standard errors on 
teachers’ estimates. 

In the first regression step, we used the errors-in-variables approach to get the initial 
estimates of value added. We estimated the regression equations 1 and 2 with the correction to 
obtain unbiased estimates of the coefficients on the pre-test scores. We based the correction on 
the published reliabilities for each OCCT and EOI test. For the OCCT model, we used grade- 
and subject-specific reliability data. For the EOI regression, we used subject-specific reliability 
data. We then used the coefficients to calculate an adjusted post-test score that nets out the 
contribution of the pre-test scores. The adjusted post-test score for the OCCT approach is given 
by: 

(3) ( ) ( ) ( )1 1 11 Mg Rg Sgi g i g i gtigtig M R SA Y λ λ λ− − −− −≡ −   

The adjusted post-test scores for the EOI approach are given by: 

(4) ( )2 12 i gtigtigA Y −′≡ − λ P  

The vectors A1tig and A2tig represent the post-test scores, net of the estimated contribution of 
the student’s pre-test scores. We calculated an adjusted post-test score for each OCCT grade and 
subject and for each EOI subject. 

We used these adjusted post-test scores in a second regression step to obtain standard errors 
that are consistent in the presence of both heteroskedasticity and clustering at the student level, 
because the regression includes multiple observations for the same student. This second-stage 
regression is necessary because it is not computationally possible to simultaneously account for 
correlation in the error term ε across multiple observations and apply the numerical formula for 
the errors-in-variables correction. Thus, for each OCCT grade and subject we estimated the final 
regression in equation 5: 

(5) 1 1 11 g i tig tigtigA ε′ ′= + +β X δ T . 
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and for each EOI subjects, we estimated the final regression in equation 6: 

(6) ( ) 2 2 2 212 g i ti tigi gtigA ε−′ ′ ′ ′= + + + +γC κG β X δ T . 

The coefficients appear in equations 5 and 6 as they did in equations 1 and 2 because the 
regressions produce identical coefficient estimates; equations 5 and 6 apply a correction only to 
the standard errors. 

This two-step method likely underestimates the standard error of the estimated δ1 and δ2 
because the adjusted gains in equations 3 and 4 rely on the estimated values of the pre-test 
coefficients λMg, λRg, λSg, and the vector λ(g-1). Treating these coefficients as fixed rather than as 
estimates does not fully account for variability in post-test scores related to pre-test scores. 
Nonetheless, with the large within-grade and within-subject sample sizes, the pre-test 
coefficients were precisely estimated, likely leading to a negligible difference between the 
standard errors we obtained for the teacher value-added results and those we would have 
obtained had we not needed to treat the pre-test coefficients as fixed. 

Underestimated standard errors could result in insufficient shrinkage of some teachers’ 
value-added estimates, which we discuss in Section III.D. When using value-added point 
estimates for teacher evaluations, the key concern is not whether the standard errors of the 
estimates are universally underestimated, but whether the standard errors for some teachers are 
disproportionately underestimated, which can lead to some teacher estimates shrinking too little 
relative to other teacher estimates in the final step. Thus, there is a tradeoff in the design of the 
model between insufficient shrinkage for some teachers and accounting for measurement error. 
This approach emphasizes accuracy and face validity of teachers’ value-added estimates over 
any consequences of underestimated standard errors for the shrinkage procedure. 

C. Generalizing estimates to make them comparable across grades 

Both the average and variability of the initial value-added estimates may differ across grade 
levels, leading to a potential problem when comparing teachers assigned to different grades. The 
main concern is that factors beyond teachers’ control might drive cross-grade discrepancies in 
the distribution of value-added estimates. For example, the standard deviation of adjusted post-
test scores might vary across grades because of differences in the alignment of tests or in 
knowledge retention from one year to the next. However, in TLE, all teachers will be compared 
within a subject, regardless of any grade-specific factors that might affect the distribution of 
gains in student performance between years. 

Because of differences in our approach to estimating value added based on the OCCT and 
EOI tests, our method to address differences across grades also varied. For the OCCT approach, 
we transformed the grade-specific value-added estimates to be comparable across grades and 
then combined these transformed estimates for teachers of multiple grades. For the EOI 
approach, we addressed differences across grades by accounting for grade in the regression 
model. 
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1. Grade-level adjustments in the OCCT approach 

Transforming estimates into generalized OCCT points. For value-added results based on 
the OCCT tests, we translated teachers’ grade-level estimates so that each set of estimates is 
expressed in a common metric of generalized OCCT points. Aside from putting value-added 
estimates for teachers on a common scale, this approach leads to distributions of teacher 
estimates that are more equal across grades. Doing so avoids penalizing or rewarding teachers 
simply for teaching in a grade with atypical test properties. However, the approach does not 
reflect a priori knowledge that the true distribution of teacher effectiveness is similar across 
grades. Rather, without a way to distinguish cross-grade differences in teacher effectiveness from 
cross-grade differences in testing conditions, the test instrument itself, or student cohorts, the 
approach reflects an implicit assumption that the distribution of true teacher effectiveness is the 
same across grades. 

We standardized the initial estimates of teacher effectiveness from the OCCT regressions so 
that the mean and standard deviation of the distribution of teacher estimates is the same across 
grades. First, we subtracted from each initial estimate the average of all estimates within the 
same grade. We then divided the result by an estimate of the standard deviation within the same 
grade. To reduce the influence of imprecise estimates obtained from teacher-grade combinations 
with few students, we calculated the average using weights based on the number of students 
taught by each teacher. Our method of calculating the standard deviation of teacher effects also 
assigns less weight to imprecise individual estimates. Finally, we multiplied by the square root of 
the teacher-weighted average of the grade-specific variances, obtaining a common measure of 
effectiveness on the generalized OCCT-point scale. 

Formally, the value-added result expressed in generalized OCCT points is the following: 

(7) 
( ) 8

2

4

ˆ ˆ
1

ˆ ˆ
ˆ

tg g

tg h h
hg

K
K

δ δ
η σ

σ =

−  = ×  
 
∑ , 

where δ̂ tg  is the grade-g estimate for teacher t, δ̂ g  is the weighted average estimate for all 

teachers in grade g, ˆgσ  is the estimate of the standard deviation of teacher effectiveness in grade 

g, Kh is the number of teachers with students in grade h, and K is the total number of teachers. 

In equation 7, we used an adjusted standard deviation that removes estimation error to 
reflect the dispersion of underlying teacher effectiveness. The unadjusted standard deviation of 
the value-added estimates will tend to overstate the true variability of teacher effectiveness; 
because the scores are regression estimates, rather than known quantities, the standard deviation 
will partly reflect estimation error. Using the unadjusted standard deviations to scale estimates 
could lead to over- or underweighting one or more grades when the extent of estimation error 
differs across grades. This is because doing so would result in estimates with the same amount of 
total dispersion—the true variability of teacher effectiveness and the estimation error 
combined—in each grade, but the amount of true variability in each grade would not be equal. 
Instead, we scaled the estimates using the adjusted standard deviation, spreading out the 
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distribution of effectiveness in grades with relatively imprecise estimates so that estimates of 
teacher effectiveness in each grade have the same true standard deviation.10 

We calculated the error-adjusted variance of teacher value-added results separately for each 
grade as the difference between the weighted variance of the grade-g teacher estimates and the 
weighted average of the squared standard errors of the estimates. The error-adjusted standard 
deviation ˆgσ  is the square root of this difference. We chose the weights based on the EB 

approach outlined by Morris (1983). In this approach, the observed variability of the value-added 
estimates is adjusted downward according to the extent of estimation error. 

Table III.2 shows the adjusted standard deviation of the initial estimates of teacher 
effectiveness derived from the value-added regression, as well as the weighted average across all 
grades produced by equation 7. A higher standard deviation for a grade-year combination 
indicates more dispersion in underlying teacher effectiveness before the estimates were 
transformed into generalized OCCT points. The standard deviation of value added ranged from 
21.3 to 22.1 OCCT points in math and from 11.2 to 12.3 points in reading. By comparison, the 
range of the standard deviations of student-level achievement across grades was 71.9 to 90.9 
OCCT points in math and 68.2 to 84.8 points in reading. Because we estimated value-added 
results for EOI subjects pooling all grades, we report only the combined standard deviations. 
These ranged from 5.7 to 24.3 EOI points. By comparison, the range of the standard deviations 
of student-level achievement across grades was 50.2 to 70.1 EOI points. 

Table III.2. Adjusted standard deviations of value added, by subject and 

grade 

Model 

Grade 
Weighted 

average 
Student-level 

achievement 4 5 6 7 8 

OCCT math 22.1 21.7 21.8 21.4 21.3 22.0 71.9 - 90.9 
OCCT reading 12.1 11.8 12.3 11.2 11.5 12.0 68.2 - 84.8 

Algebra I      15.0 50.2 

Geometry      24.3 70.1 

Algebra II      14.2 62.9 

English III      5.7 51.1 

Source: Mathematica calculations based on OSDE administrative data. 

Notes:  Teachers are included in the calculation of the standard deviation for each grade that they teach.  

 The average standard deviation is weighted by the number of teachers in each grade. 

Combining OCCT estimates for teachers of multiple grades. To combine grade-level 
estimates from OCCT models into a single (unshrunk) value-added result, denoted as η̂t , for a 

teacher with students in multiple grades, we used a weighted average of the grade-specific 
estimates (expressed in generalized OCCT points). We set the weight for grade g equal to the 
proportion of students of teacher t in grade g. Because combining teacher effects across grades 
                                                 
10 For teachers in grades with imprecise estimates, the shrinkage procedure, described in Section III.D, counteracts 
the tendency for these teachers to receive final estimates in the extremes of the distribution. 
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might cause the overall average to be nonzero, we recentered the estimates on zero before 
proceeding to the next step. 

We computed the variance of each teacher’s combined effect as a weighted average of the 
grade-specific squared standard errors of the teacher’s estimates. We set the weight for grade g 
equal to the squared proportion of students of teacher t in grade g. For simplicity, we assumed 
that the covariance across grades is zero. In addition, we did not account for uncertainty arising 

because ̂δ g  and ˆgσ  in equation 7 are estimates of underlying parameters rather than known 

constants. Both decisions imply that the standard errors will be underestimated slightly. 

2. Grade-level adjustments in the EOI approach 

Unlike the grade-by-grade OCCT approach, we pooled grades for the EOI estimation 
equation and estimated a single initial value-added estimate for each teacher, rather than one for 
each teacher-grade combination. We also used a different method to account for differences 
across grades because of this difference in approach. To account for differences across grades in 
EOI models, we included binary variables for each grade (excluding the highest grade) in the 
regressions. For example, students taking geometry in grade 9 or 10 might be higher-ability 
students on average compared to students taking geometry in grade 11, even after accounting for 
the other variables in the model. The coefficients on the grade 9 and grade 10 indicators would 
give the increase in the typical achievement for students in these grades relative to a student 
taking geometry in grade 11. This approach avoids penalizing teachers for teaching in grades 
with lower-ability students. 

One potential concern with this approach is that the coefficients could also measure 
differences in the effectiveness of teachers in different tracks, which could lead to bias in the 
value-added results related to teachers’ grade assignments. This is unlikely, because the 
coefficients on the grade indicators are based on comparing the achievement of students whose 
teachers teach the same subject to students in multiple grades, instead of comparing achievement 
across teachers. We achieved this by simultaneously including T2ti in the regression equation so 
that all relationships between the variables included in the regression and achievement—
including the grade indicators—were based on within-teacher variation in student achievement, 
rather than on variation from students in different teachers’ classrooms. 

D. Accounting for different numbers of students 

To reduce the risk that teachers, particularly those with relatively few students in their grade, 
will receive a very high or very low effectiveness measure by chance, we applied the EB 
shrinkage procedure (Herrmann et al. 2013). Using the EB procedure outlined in Morris (1983), 
we computed a weighted average of an estimate for the average teacher and the initial estimate 
based on each teacher’s own students. For teachers with relatively imprecise initial estimates 
based on their own students, the EB method effectively produces an estimate based more on the 
average teacher. For teachers with more precise initial estimates based on their own students, the 
EB method puts less weight on the value for the average teacher and more weight on the value 
obtained from the teacher’s own students. 
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The EB estimate for a teacher is approximately equal to a precision-weighted average of the 
teacher’s estimated effect (after generalizing across grades) and the overall mean of all estimated 
teacher effects. 11 Following the standardization procedure, the overall mean is zero, with better-
than-average teachers having positive scores and worse-than-average teachers having negative 
scores. We therefore arrived at the following: 

(8) 
2

2 2

ˆ
ˆ ˆ

ˆ ˆ
ση η

σ σ
 

≈  + 
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t t
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,
 

where η̂ EB
t  

is the EB estimate for teacher t, η̂t  
is the initial estimate of effectiveness for teacher t 

based on the regression model (after combining OCCT estimates across grades), ˆtσ  is the 

standard error of the estimate of teacher t, and σ̂  is an estimate of the standard deviation of 
teacher effects (purged of sampling error), which is constant for all teachers. Equation 8 has no 
explicit term for the weight on the overall mean because this mean is zero. The term [2σ̂ /( 2σ̂ +

2ˆtσ )] must be less than one. Thus, the EB estimate always has a smaller absolute value than the 

initial estimate—that is, the EB estimate “shrinks” from the initial estimate. The greater the 
precision of the initial estimate—that is, the smaller 2ˆtσ  is—the closer [ 2σ̂ /( 2σ̂ + 2ˆtσ )] is to one 

and the smaller the shrinkage in η̂t . Conversely, the larger the variance of the initial estimate, the 

greater the shrinkage in η̂t . By applying a greater degree of shrinkage to less precisely estimated 

teacher measures, the procedure reduces the likelihood that the estimate of effectiveness for a 
teacher falls at either extreme of the distribution by chance. We calculated the standard error for 
each η̂ EB

t  using the formulas provided by Morris (1983). As a final step, we removed any 

teachers with fewer than 10 students and recentered the EB estimates on zero. 

                                                 
11 In Morris (1983), the EB estimate does not exactly equal the precision-weighted average of two values due to a 
correction for bias. This adjustment decreases the weight on the estimated effect by a factor of (K–3)/(K–1), where 
K is the number of teachers. For ease of exposition, we have omitted this correction from the description given here. 
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IV. SCHOOL AND SUBGROUP VALUE-ADDED RESULTS FOR TLE 

Educators will receive three types of results derived from the value-added results for 
teachers: (1) TLE component scores, (2) school value-added results, and (3) value-added results 
for student subgroups. In this chapter, we describe how we calculate each of these statistics from 
the value-added results. 

A. Using the value-added results in TLE 

We provided OSDE with the original generalized OCCT or EOI point value-added results, 
the average typical and actual scores, and value-added results that had been converted to a scale 
from 1.0 to 5.0 for each teacher in the model. TLE requires that the value-added results take on 
one of 41 values from 1.0 to 5.0 when they are used to calculate composite TLE ratings. The 
Oklahoma State Board of Education approved the TLE Commission’s recommended method of 
converting the value-added results to this scale. In this system, the average Oklahoma teacher 
received a score of 3.0; teachers whose results exceeded the average by two standard deviations 
received a score of 5.0; and those whose results fell below the average by two standard 
deviations received a score of 1.0. Teachers who were eligible for value-added results in multiple 
subjects received scores in each subject. We then assigned these teachers a combined component 
score that was a weighted average of their subject-specific scores. The weight given to each 
subject was the number of student equivalents. 

B. School value-added results 

Each school’s value-added result reflects the combined contributions of teachers at that 
school. For each subject, we calculated a school’s value added as a weighted average of the 
school’s initial teacher value-added results.12 The weight given to each teacher was the number 
of student equivalents. Rather than giving equal weight to each teacher in the calculation of 
school value added, this approach gives equal weight to students who have the same dosage in 
the value-added model. The averages for schools also include value-added results for the catch-
all teachers of unassigned students. We then applied the same two post-regression adjustments to 
the school estimates that we did for teachers; we standardized OCCT estimates across grades, 
and applied shrinkage to the combined estimates. We removed estimates in a subject for schools 
with fewer than 10 students in the subject. As a final step, we calculated TLE component scores 
for schools across all subjects using the same procedure we used for teachers. 

This method for calculating school value-added results provides two benefits that other 
commonly used methods do not. First, this method directly measures the contributions of 
teachers in the school, making this approach more transparent than some alternatives. Second, 
the primary alternative approach to estimating school value added—estimating a regression 
similar to that for the teacher model, but replacing teacher indicators with school indicators—

                                                 
12 The initial estimates used in to calculate the school’s average differ slightly from those produced by the models 
described in Chapter III. To measure distinct contributions to the achievement of students in different schools of 
teachers who taught at multiple schools, the regressions were modified to include indicators for each teacher-school 
combination instead of only for each teacher. Additionally, only students linked to teacher-school combinations that 
met the five-student minimum were included in the regressions. We included catch-all teachers of unassigned 
students in the school value-added model just as we did for the teacher value-added model. 
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might not distinguish achievement due to the characteristics of students in the school from 
achievement due to the effectiveness of teachers in the school. This is because omitting the 
teacher indicators can lead to estimated relationships between student background characteristics 
and achievement that do not fully account for how students are assigned to teachers within 
schools, thereby attributing achievement caused by factors outside of teachers’ control to 
schools. Our approach addresses this concern by averaging direct estimates of teachers’ 
contributions.  

C. Value-added results for student subgroups 

We used the students’ actual post-test scores and estimated typical scores to calculate the 
value-added results for student subgroups. The teacher’s (or school’s) value-added result for a 
subgroup is the difference between the average actual post-test scores and the average typical 
scores, where the averages are calculated based only on scores for students in the subgroup. The 
typical scores reflect the adjustments that we made to the initial value-added estimates described 
in Chapter III, including shrinkage and standardization across grades. We mean-centered the 
subgroup value-added results by combinations of subgroups and subjects so that a positive 
subgroup result reflects above-average contributions to the achievement of students in the 
subgroup compared to other Oklahoma teachers or schools. As a final step, we removed 
subgroup value-added results for teachers or schools with fewer than seven students in the 
subgroup.13 

For the reporting of subgroup results for teachers and schools, we transformed the results to 
take on values of above average, average, or below average. We defined above average as value-
added results that are greater than or equal to one standard deviation above the average teacher 
value-added result in the subject-subgroup combination. Similarly, we defined below average as 
less than or equal to one standard deviation below the average teacher value-added results in the 
subject-subgroup combination. We assigned a value of average to all other teachers with eligible 
subgroup value-added results. We produced results for student subgroups based on limited 
English proficiency status, individualized education program status, and proficiency levels on the 
pre-test from the same content area as the post-test. 

 

                                                 
13 Whereas we did not report full-sample value-added results for teachers with fewer than 10 students, we used a 
cutoff of seven students for subgroup value-added because it meant giving more teachers subgroup results. Although 
value-added results based on so few students will tend to be imprecise, this is less of a concern for the subgroup 
results than for the full-sample results, primarily because the subgroup results do not directly contribute to a 
teacher’s TLE score. 
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